

BIO-TECH MEDICAL SOFTWARE, INC.
BioTrackTHC JSON API

BioTrackTHC API

Volume

4

For questions regarding this API, please call 1-800-779-4094 or email waquestions@biotrackthc.com

B I O - T E C H M E D I C A L S O F T W A R E , I N C .

BioTrackTHC JSON API

 2013 Bio-Tech Medical Software, Inc.
Fort Lauderdale, FL
Phone 800.797.4711

Table of Contents

Prefix: About This Document .. 1

Changes .. 2

Inventory Types .. 2

Chapter 1: Authentication ... 4

login .. 4

user_add ... 8

user_modify .. 11

user_remove ... 12

Chapter 2: Employees & Vehicles .. 13

employee_add .. 13

employee_modify .. 14

employee_remove .. 15

Chapter 3: Rooms .. 18

plant_room_add .. 18

plant_room_modify ... 18

plant_room_remove .. 19

inventory_room_add ... 20

inventory_room_modify ... 20

inventory_room_remove ... 21

Chapter 4: Plants ... 22

plant_new .. 22

plant_move ... 23

plant_destroy_schedule .. 24

plant_destroy .. 25

plant_harvest_schedule .. 25

plant_harvest .. 26

plant_waste_weigh ... 29

plant_cure ... 30

plant_convert_to_inventory ... 33

plant_yield_modify .. 34

Chapter 5: Inventory ... 36

inventory_adjust .. 36

inventory_destroy_schedule ... 37

inventory_destroy .. 38

inventory_move ... 39

inventory_check .. 40

inventory_new ... 41

inventory_manifest .. 43

inventory_transfer ... 44

inventory_transfer_modify ... 45

inventory_create_lot .. 46

inventory_split ... 48

inventory_convert .. 50

inventory_sample .. 52

Chapter 6: Sales .. 54

sale_dispense ... 54

sale_void ... 56

sale_modify ... 56

sale_refund ... 57

Chapter 7: Testing .. 60

Reserved ... 60

Chapter 8: Synchronization .. 61

Reserved ... 61

P R E F I X : G E T T I N G S T A R T E D

1

Prefix: About This Document

elcome to BioTrackTHC JSON platform. This manual serves as a
comprehensive guide that details the various functions and data points that
are relevant for the BioTrackTHC traceability system. This document is being
released to the public in draft form ahead of schedule to expedite the

integration process for commercial entities that intend to serve the producer, processor
and retail establishments within the state of Washington.

Please note: There WILL be changes to this document. This may include pairing down of
existing structures or additions to the specification based on legal requirements.

Although this document is public and may be read by anyone; much of it assumes that
the reader has a basic understanding of web technologies and programming interfaces. It
is geared towards individuals looking to interface directly to the state traceability system
without utilizing the official state web interface. The official state web interface will be
available at no cost for individuals who wish to upload their data without a commercial
application. However, the official web interface is intended to only collect the minimum
amount of information for the state compliance and does not collect information related
to e.g. sales; every licensee is responsible for keeping their own business records.

All of the documentation provided in this datasheet is copyright Bio-Tech Medical
Software, Inc. (BMSI). License is granted to the Washington State Liquor Control Board
(WSLCB) to freely use and distribute the documentation in complete and unaltered form.

BMSI and WSLCB shall in no event be liable to any party for direct, indirect, special,
general, incidental, or consequential damages arising from the use of its documentation,
or any derivative works thereof, even if BMSI or WSLCB have been advised of the
possibility of such damage. The documentation, and any derivative works are provided on
an as-is basis, and thus comes with absolutely no warranty, either express or implied. This
disclaimer includes, but is not limited to, implied warranties of merchantability, fitness for
any particular purpose, and non-infringement. BMSI and WSLCB have no obligation to
provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be
construed as a commitment by BMSI or WSLCB. While the information contained
herein is believed to be accurate, BMSI and WSLCB assume no responsibility for any
errors and/or omissions that may appear in this document.

That being said, we look forward to working with the industry to finalize and solidify the
world’s first official marijuana traceability API.

W

P R E F I X : G E T T I N G S T A R T E D

2

Changes
Before diving in, there have been a number of changes since the initial draft. The current
draft includes Washington specific language and functions. The inventory typing system
has been greatly expanded to cover all of the various types of inventory that have been
defined with limits as delineated in law and rules.

Inventory Types

5 Kief

6 Flower

7 Clone

9 Other Plant Material (stems, leaves, etc to
be processed)

10 Seed

11 Plant Tissue

12 Mature Plant

13 Flower Lot

14 Other Plant Material Lot

15 Bubble Hash

16 Hash

17 Hydrocarbon Wax

18 CO2 Hash Oil

19 Food Grade Solvent Extract

20 Infused Dairy Butter or Fat in Solid Form

21 Infused Cooking Oil

22 Solid Marijuana Infused Edible

23 Liquid Marijuana Infused Edible

24 Marijuana Extract for Inhalation

P R E F I X : G E T T I N G S T A R T E D

3

25 Marijuana Infused Topicals

26 Sample Jar

27 Waste

28 Usable Marijuana

Unique Identifiers

The system will generate unique identifiers for all plants and inventory. Plants will be
assigned random sixteen digit identifiers. Inventory items (e.g. lots, batches, etc.) will also
be provided identifiers, with the first nine digits representing the UBI number of the
producer or processor that is creating the item.

Convenience Functions

A number of convenience functions have been removed to facilitate a quicker
implementation timeline for third party integrators. A future specification may re-
implement these to further improve data integrity.

C H A P T E R 1 : A U T H E N T I C A T I O N

4

Chapter 1: Authentication

In this chapter, you’ll learn how to:

 Communicate with the traceability system

 Authenticate

 Create and modify users

 Elevate privileges, when necessary

very request begins with with “json”.. The current iteration of our API is now
at 4.0. It is strongly recommended that every application specify this with
every request. We do anticipate future changes and specifying the API will
ensure your application does not receive errors when features are added or

deprecated, but not entirely removed. Otherwise, the system will assume you are
referencing the latest version. Every API request has an action associated with it. Any
request that does not specify an action will automatically be rejected. Improperly
formatted JSON requests will be rejected. When in doubt, see: http://jsonlint.com/.
So, at bare minimum, a request should appear as follows:

{
 "JSON": {
 "API": "4.0",
 "action": "foo"
 }
}

The request should be sent as a raw POST request (URL to follow) of the type
text/JSON. The result will also be of text/JSON type.

login
When registering with the WSLCB, an account administrator will receive a password in
their email that will grant full access. This email address and password can then be
shared, stored or utilized by a commercial application to initially authenticate with the
traceability system.

Parameters:

E

http://jsonlint.com/

C H A P T E R 1 : A U T H E N T I C A T I O N

5

action variable length text field
username variable length text field
password variable length text field
license_number variable length text field

{

 "JSON": {

 "API": "4.0",

 "action": "login",

 "password": "foobar",

 "license_number": "000000009",

 "username": "username@domain.com"

 }

}

A client should login with their username, password and the 9 digit UBI number of
their account. A successful authentication will result in the following:

{
 "JSON": {
 "admin": "1",
 "sessionid":
"2f58596cad6db73d6cdd599b11cd169263a54cd37dc75ae0bfefe0cd9c9
c571c107059f23fe8cf7d4572f4878b9e1d9821e097e9348aa7b59a31180
ab8c9e6c8",
 "time": "1384323370",
 "success": "1"
 }
}

Returned Parameters:
admin Boolean value
sessionid sha512 hex encoded string

C H A P T E R 1 : A U T H E N T I C A T I O N

6

time Unix 32-bit integer timestamp
success Boolean value

The admin parameter will indicate that the authenticated user is an administrator
capable of creating other users, setting permissions, etc. The sessionid parameter can
be used for future requests under the user who originally authenticated for quicker
requests.

If an application is not interested in maintaining sessions, they may also choose to
simply include the aforementioned values with the nosession parameter. For example:

{

 "JSON": {

 "API": "4.0",

 "action": "test",

 "password": "foobar",

 "license_number": "000000009",

 "username": "username@domain.com",

 "nosession": "1"

 }

}

By setting the nosession parameter to 1, requests can be made without creating a
stateful session, if necessary.

During the course of a normal session, a session’s credentials can also be temporarily
elevated for the duration of the action by passing the super_user and super_password
parameters.

{

C H A P T E R 1 : A U T H E N T I C A T I O N

7

 "JSON": {

 "API": "4.0",

 "action": "admin_action_example",

 "sessionid":
"2f58596cad6db73d6cdd599b11cd169263a54cd37dc75ae0bfe
fe0cd9c9c571c107059f23fe8cf7d4572f4878b9e1d9821e097e9
348aa7b59a31180ab8c9e6c8",

 "super_password": "foobar",

 "super_user": "username@domain.com",

 "param": "foo"

 }

}

If a function call returns 0 value for success, it will also set an
<error>explanation</error> for easier error handling. In addition, it will also carry an
<errorcode>1234</errorcode> for reference. This document does not currently
have a detailed list of error codes. That will be forthcoming in the final draft for ease of
debugging efforts. For brevity, all code examples hereafter will omit the sessionid
parameter; but it is assumed that either that or the proper nosession credentials are
provided for every request.

The application interface also supports a testing interface. If a licensee wishes to
practice or a commercial application wishes to test their integration capabilities a
request may include the <training>1</training> node within a request. Users cannot
be created, modified or removed in training mode. They are automatically transposed
from the production environment. Every user automatically has full capabilities in
training mode; that is, there are no ACL controls (as the data is not real). If a session is
created in training mode, and an attempt is made to perform an action in production
mode (or vice versa) an invalid session will be triggered as they operate completely
separate from one another. It will be up to the application to save state as to which
mode the connection was initiated with. As can be seen below, training mode is easy to
trigger:

{
 "JSON": {

C H A P T E R 1 : A U T H E N T I C A T I O N

8

 "API": "4.0",
 "training": "1",
 "action": "login",
 "password": "foobar",
 "license_number": "123456789",
 "username": "username@domain.com"
 }
}

user_add
Users with administrative privileges can add other users via the user_add function. As
demonstrated below, each function is discrete and robust ACLs can be utilized by an
integrating party.

Parameters:
action variable length text field
new_username variable length text field
new_password variable length text field
new_permissions nested field that includes boolean

values for each permission

{

 "JSON": {

 "API": "4.0",

 "action": "user_add",

 "new_admin": "1",

 "new_password": "foobar",

 "new_username": "user1@domain.com",

 "new_permissions": {

 "employee_add": "1",

 "employee_modify": "1",

C H A P T E R 1 : A U T H E N T I C A T I O N

9

 "employee_remove": "1",

 "vehicle_add": "1",

 "vehicle_modify": "1",

 "vehicle_remove": "1",

 "plant_destroy_schedule": "1",

 "plant_destroy": "1",

 "plant_harvest_schedule": "1",

 "plant_waste_weigh": "1",

 "plant_harvest": "1",

 "plant_new": "1",

 "plant_convert_to_inventory": "1",

 "plant_cure": "1",

 "plant_move": "1",

 "plant_yield_modify": "1",

 "inventory_new": "1",

 "inventory_transfer": "1",

 "inventory_adjust": "1",

 "inventory_destroy_schedule": "1

",

 "inventory_convert": "1",

 "inventory_sample": "1",

C H A P T E R 1 : A U T H E N T I C A T I O N

10

 "inventory_manifest": "1",

 "inventory_check": "1",

 "inventory_destroy": "1",

 "inventory_move": "1",

 "inventory_transfer_schedule": "1",

 "inventory_transfer_modify": "1",

 "inventory_create_lot": "1",

 "inventory_split": "1",

 "user_add": "1",

 "user_modify": "1",

 "user_remove": "1",

 "location_add": "1",

 "location_modify": "1",

 "location_remove": "1",

 "plant_room_add": "1",

 "plant_room_modify": "1",

 "plant_room_remove": "1",

 "inventory_room_add": "1",

 "inventory_room_modify": "1",

 "inventory_room_remove": "1",

 "sale_dispense": "1",

C H A P T E R 1 : A U T H E N T I C A T I O N

11

 "sale_void": "1",

 "sale_modify": "1",

 "sale_refund": "1"

 }

 }

}

Each permission should either be 1 for true, 0 for false. Any nested parameter for the
new_permissions parameter that are not included shall be assumed to be 0.

Returned Parameters:
success Boolean value

user_modify
Users with administrative privileges can modify other users via the user_modify
function.

Parameters:
action variable length text field
new_username variable length text field
new_password variable length text field
new_permissions nested field that includes boolean

values for each permission

{
 "JSON": {
 "API": "4.0",
 "action": "user_modify",
 "new_admin": "1",
 "new_password": "foobar",
 "new_username": "user1@domain.com",
 "new_permissions": "
…
"
 }

C H A P T E R 1 : A U T H E N T I C A T I O N

12

}

Returned Parameters:
success Boolean value

user_remove
Users with administrative privileges can remove other users via the user_remove
function. Please note: The initial user that was created with the license cannot be
removed.

Parameters:
action variable length text field
new_username variable length text field

{
 "JSON": {
 "API": "4.0",
 "action": "user_remove",
 "new_username": "user1@domain.com"
 }
}

Returned Parameters:
success Boolean value

C H A P T E R 2 : E M P L O Y E E S & V E H I C L E S

13

Chapter 2: Employees & Vehicles

In this chapter, you’ll learn how to:

 Add, modify and remove employees

 Add, modify and remove vehicles

employee_add
Every organization will need to input basic information on their employees when
providing samples or submitting transport manifests. Organizations will not be
required to provide comprehensive employee lists, but, rather, on an as-needed basis
for actions requiring an employee identification.

Parameters:
action variable length text field
employee_name variable length text field
employee_id unique variable length text field
birth_month two character integer
birth_day two character integer
birth_year four character integer
hire_month two character integer
hire_day two character integer
hire_year four character integer

{
 "JSON": {
 "API": "4.0",
 "action": "employee_add",
 "employee_name": "Joe Employee",
 "employee_id": "12345",
 "birth_month": "01",
 "birth_day": "01",
 "birth_year": "1980",
 "hire_month": "01",
 "hire_day": "01",
 "hire_year": "2014"
 }

C H A P T E R 2 : E M P L O Y E E S & V E H I C L E S

14

}

Returned Parameters:
success Boolean value

employee_modify
This function should be used to update an existing employee.

Parameters:
action variable length text field
employee_name variable length text field
employee_id unique variable length text field
birth_month two character integer
birth_day two character integer
birth_year four character integer
hire_month two character integer
hire_day two character integer
hire_year four character integer

{
 "JSON": {
 "API": "4.0",
 "action": "employee_modify",
 "employee_name": " Joe Employee",
 "employee_id": "12345",
 "birth_month": "01",
 "birth_day": "01",
 "birth_year": "1980",
 "hire_month": "01",
 "hire_day": "01",
 "hire_year": "2014"
 }
}

Returned Parameters:
success Boolean value

C H A P T E R 2 : E M P L O Y E E S & V E H I C L E S

15

employee_remove
This function should be used to remove an employee.

Parameters:
action variable length text field
employee_id unique variable length text field

{
 "JSON": {
 "API": "4.0",
 "action": "employee_remove",
 "employee_id": "12345"
 }
}

Returned Parameters:
success Boolean value

vehicle_add
Every organization will need to input basic information on their vehicles when
submitting transport manifests. This includes an integer id number that should be
associated with the vehicle and the associated information for that vehicle, including:
Color, make, model, plate and VIN.

Parameters:
action variable length text field
vehicle_id unique integer
color variable length text field
make variable length text field
model variable length text field
plate variable length text field
vin variable length text field

{
 "JSON": {
 "API": "4.0",
 "action": "vehicle_add",

C H A P T E R 2 : E M P L O Y E E S & V E H I C L E S

16

 "vehicle_id": "2",
 "color": "Red",
 "make": "Ford",
 "model": "Mustang",
 "plate": "ABC124",
 "vin": "123242365566"
 }
}

Returned Parameters:
success Boolean value

vehicle_modify
This function should be used to update an existing vehicle.

Parameters:
action variable length text field
vehicle_id unique integer
color variable length text field
make variable length text field
model variable length text field
plate variable length text field
vin variable length text field

{
 "JSON": {
 "API": "4.0",
 "action": "vehicle_modify",
 "vehicle_id": "2",
 "color": "Blue",
 "make": "Ford",
 "model": "Mustang",
 "plate": "ABC124",
 "vin": "123242365566"
 }
}

C H A P T E R 2 : E M P L O Y E E S & V E H I C L E S

17

Returned Parameters:
success Boolean value

vehicle_remove
This function should be used to remove an employee.

Parameters:
action variable length text field
vehicle_id unique integer

{
 "JSON": {
 "API": "4.0",
 "action": "vehicle_remove",
 "vehicle_id": "2"
 }
}

Returned Parameters:
success Boolean value

C H A P T E R 3 : R O O M S

18

Chapter 3: Rooms

In this chapter, you’ll learn how to:

 Add, modify and remove plant rooms

 Add, modify and remove inventory rooms

plant_room_add
Plant rooms represent a way to logically segregate plants in a specific location. These
can include actual rooms inside of indoor facility or fields in an outdoor facility.

Parameters:
action variable length text field
name variable length text field
location license number of location value
id integer value

{
 "JSON": {
 "API": "4.0",
 "action": "plant_room_add",
 "name": "Veg 1",
 "id": "1",
 "location": "12345"
 }
}

Returned Parameters:
success Boolean value

plant_room_modify
Plant rooms can be renamed or re-activated with this function.

Parameters:
action variable length text field
name variable length text field

C H A P T E R 3 : R O O M S

19

location license number of location value
id integer value

{
 "JSON": {
 "API": "4.0",
 "action": "plant_room_modify",
 "name": "Veg 2",
 "id": "1",
 "location": "12345"
 }
}

Returned Parameters:
success Boolean value

plant_room_remove
Plant rooms can be removed with this function.

Parameters:
action variable length text field
location license number of location value
id integer value

{
 "JSON": {
 "API": "4.0",
 "action": "plant_room_remove",
 "id": "1"
 }
}

Returned Parameters:
success Boolean value

C H A P T E R 3 : R O O M S

20

inventory_room_add
Inventory rooms represent a way to logically segregate inventory in a specific location.
This can offer a real-time representation not only of the overall on-hand amount of a
specific item but also the amount in a specific area of a facility. A room can be
designated as a quarantine room with this function, as well. At least one quarantine
room is required for segregating inventory before transportation. A room identifier
must always be greater than zero. The room 0 is reserved as a general identifier for
inventory that has not been assigned to a room.

Parameters:
action variable length text field
name variable length text field
location license number of location value
id integer value
quarantine Boolean value

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_room_add",
 "name": "Veg 1",
 "id": "1",
 "quarantine": "0",
 "location": "12345"
 }
}

Returned Parameters:
success Boolean value

inventory_room_modify
Inventory rooms can be renamed or re-activated with this function.

Parameters:
action variable length text field
name variable length text field
location license number of location value
id integer value
quarantine Boolean value

C H A P T E R 3 : R O O M S

21

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_room_modify",
 "name": "Veg 2",
 "id": "1",
 "quarantine": "0",
 "location": "12345"
 }
}

Returned Parameters:
success Boolean value

inventory_room_remove
Inventory rooms can be removed with this function.

Parameters:
action variable length text field
location license number of location value
id integer value

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_room_remove",
 "id": "1"
 }
}

Returned Parameters:
success Boolean value

C H A P T E R 4 : P L A N T S

22

Chapter 4: Plants

In this chapter, you’ll learn how to:

 Add and remove plants

 Harvest and cure plants

 …and much, much more!

plant_new
The plant_new function will allow a cultivator to enter new plants into the traceability
system. This function will require the strain, quantity, location, new room, whether the
plant will be used as a mother plant (this can be toggled later if necessary) and the
source identification number. The source identification number can be from one of the
following inventory types: Clone, Seed, Mature Plant and Plant Tissue. Clone, Seed and
Mature Plant are depletable inventory items in that any plant creation will automatically
deduct from the count in inventory (so ensure that the quantity of new plants does not
exceed that available from inventory).

Parameters:
action variable length text field
strain variable length text field
location license number of location
room integer value
source text field representing unique

identifier
quantity integer value

{
 "JSON": {
 "API": "4.0",
 "action": "plant_new",
 "location": "12345",
 "source": "2288954595338316",
 "quantity": "2",
 "room": "1",
 "strain": "Blueberry"
 }
}

C H A P T E R 4 : P L A N T S

23

Return example:
{
 "JSON": {
 "barcode_id": [
 "6853296789574115",
 "6853296789574116"
],
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3278"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id Array of 1 or more text fields representing

the new unique identifiers attached to the
plants

Transaction IDs are generated for every action which involves the submission of
licensee data. These TIDs are used for audit purposes and should be maintained.

plant_move
The plant_move function will allow a cultivator to move plants from their current
room to a new one.

Parameters:
action variable length text field
room integer value
barcodeid Array of 1 or more text fields

representing the plants to move

{
 "JSON": {
 "API": "4.0",

C H A P T E R 4 : P L A N T S

24

 "action": "plant_move",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
],
 "room": "2"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value

plant_destroy_schedule
The plant_destroy_schedule function will allow a licensee to schedule for destruction a
plant or set of plants. This event will begin a 72-hour waiting period before a
plant_destroy function may be called on the plant(s).

Parameters:
action variable length text field
reason variable length text field
barcodeid Array of 1 or more text fields

representing the plants

{
 "JSON": {
 "API": "4.0",
 "action": "plant_destroy_schedule",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
],
 "reason": "Mold"
 }
}

C H A P T E R 4 : P L A N T S

25

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

plant_destroy
The plant_destroy function will allow a licensee to destroy a plant or set of plants.
Plants may only be destroyed after the waiting period has expired.

Parameters:
action variable length text field
barcodeid Array of 1 or more text fields

representing the plants

{
 "JSON": {
 "API": "4.0",
 "action": "plant_destroy",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
]
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

plant_harvest_schedule
The plant_harvest_schedule function will notify the traceability system of intent to
begin harvesting a plant or set of plants. This notification must occur before the
plant_harvest is called on these plants.

Parameters:
action variable length text field

C H A P T E R 4 : P L A N T S

26

barcodeid Array of 1 or more text fields
representing the plants

{
 "JSON": {
 "API": "4.0",
 "action": "plant_harvest_schedule",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
]
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

plant_harvest
The plant_harvest function will begin the process of harvesting a plant. This will move
said plant from the “growing” phase to the “drying” phase. During this process, a
cultivator must take, at a minimum, a wet weight of the plant. In addition, a cultivator
may also gather two additional derivatives defined by their inventory type. Specifically,
the system requires inventory type 6 (Flower) and optionally allows type 9 (Other Plant
Material) and type 27 (Waste).

Harvests can be partial, as well. In other words, if part of the plant is harvested
and the rest of the plant will be processed later (commonly known as re-
flowering), then the collectadditional parameter should be 1. This will inform the
traceability system to expect another additional wet weight.

Each harvest event should be on a per-plant basis. So every individual plant will
need its own wet weight reported. Both Other Plant Material and Waste collected
during this process will receive random unique identifiers. For Other Plant
Material, this will facilitate the process of creating a lot. For Waste, this will allow a
user to accumulate waste in a traceable manner and schedule a destruction event at
a later point.

Parameters:

C H A P T E R 4 : P L A N T S

27

action variable length text field
collectiontime Optional, Unix 32-bit integer

timestamp, defaults to current time
barcodeid unique identifier of the plant
weights Array of 1 or more nodes containing

weight information
 amount decimal value
 invtype integer value representing the

derivative type
 uom variable length text field. Valid values

are: g, mg, kg, oz, lb. These
represent: grams, milligrams,
kilograms, ounces and pounds.

collectadditional Keeps the plant in the growing phase
and allows the user to take another
wet weight of the plant(s) at a later
point that will compound to the
original wet weight.

new_room Optional, will move the now drying
plant(s) to another plant room.

room integer, room the collection occurred
in

location license number of location

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "plant_harvest",
 "barcodeid": "9318094993507695",
 "collectadditional": "0",
 "location": "12345",
 "room": "2",
 "new_room": "3",
 "weights": [
 {

C H A P T E R 4 : P L A N T S

28

 "amount": "250.00",
 "invtype": "6",
 "uom": "g"
 },
 {
 "amount": "500.00",
 "invtype": "9",
 "uom": "g"
 },
 {
 "amount": "125.00",
 "invtype": "27",
 "uom": "g"
 }
]
 }
}

Returns:
{
 "JSON": {
 "derivatives": [
 {
 "barcode_id": "0358560579655604",
 "barcode_type": "9"
 },
 {
 "barcode_id": "0358560579655605",
 "barcode_type": "27"
 }
],
 "sessiontime": "1384487873",
 "success": "1",
 "transactionid": "3284"
 }

C H A P T E R 4 : P L A N T S

29

}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
derivatives Array of 1 or more nodes containing new

identifiers with their associated inventory
types.

 barcode_id New identifier for the inventory specified
by barcode_type.

 barcode_type Specifies the type of derivative.

plant_waste_weigh
The plant_waste_weigh function will allow a cultivator to take a general waste weight
for destruction accountability at a later point. General leaf, stem, veg trimming, etc.
collection can thus be facilitated in a more generalized fashion without unduly
burdening a licensee.

The return inventory will be typed as 27 and must be scheduled for destruction at a
later point.

Parameters:
action variable length text field
collectiontime Optional, Unix 32-bit integer

timestamp, defaults to current time
weight decimal value
uom variable length text field. Valid values

are: g, mg, kg, oz, lb. These
represent: grams, milligrams,
kilograms, ounces and pounds.

location license number of location

Example:

{
 "JSON": {
 "API": "4.0",

C H A P T E R 4 : P L A N T S

30

 "action": "plant_waste_weigh",
 "location": "12345",
 "weight": "250.00",
 "uom": "g"
 }
}

Returns:
{
 "JSON": {
 "barcode_id": "0358560579655604",
 "barcode_type": "27",
 "sessiontime": "1384487873",
 "success": "1",
 "transactionid": "3286"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id New identifier for the inventory specified

by barcode_type.
barcode_type Specifies the type of derivative, always 27.

plant_cure
The plant_cure function will begin the process of curing a plant. This will move said
plant from the drying phase to inventory. During this process, a cultivator must take, at
a minimum, a dry weight of the plant. In addition, a cultivator may also gather
additional derivatives defined by their inventory type. Specifically, the system requires
inventory type 6 (Flower) and optionally allows type 9 (Other Plant Material) and type
27 (Waste).

If the cultivator is doing a partial harvest/cure, the plant can pass through this
function again to accumulate an additional dry weight. If the cultivator is re-
flowering, ensure the collectadditional field is set to 1.

C H A P T E R 4 : P L A N T S

31

Parameters:
action variable length text field
collectiontime Optional, Unix 32-bit integer

timestamp, defaults to current time
barcodeid unique identifier of the plant
weights Array of 1 or more nodes containing

weight information
 amount decimal value
 invtype integer value representing the

derivative type
 uom variable length text field. Valid values

are: g, mg, kg, oz, lb. These
represent: grams, milligrams,
kilograms, ounces and pounds.

collectadditional Keeps the plant in the growing phase
and allows the user to take another
wet weight of the plant(s) at a later
point that will compound to the
original wet weight.

room integer, room the collection occurred
in

location license number of location

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "plant_cure",
 "barcodeid": "9992776458335982",
 "collectadditional": "0",
 "location": "12345",
 "room": "2",
 "weights": [
 {
 "amount": "250.00",
 "invtype": "6",
 "uom": "g"

C H A P T E R 4 : P L A N T S

32

 },
 {
 "amount": "500.00",
 "invtype": "9",
 "uom": "g"
 },
 {
 "amount": "125.00",
 "collected": "0",
 "invtype": "27",
 "uom": "g"
 }
]
 }
}

Returns:
{
 "JSON": {
 "derivatives": [
 {
 "barcode_id": "0358560579655604",
 "barcode_type": "6"
 },
 {
 "barcode_id": "0358560579655605",
 "barcode_type": "9"
 }
],
 "sessiontime": "1384487873",
 "success": "1",
 "transactionid": "3290"
 }
}

C H A P T E R 4 : P L A N T S

33

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
derivatives Array of 1 or more nodes containing new

identifiers with their associated inventory
types.

 barcode_id New identifier for the inventory specified
by barcode_type.

 barcode_type Specifies the type of derivative.

plant_convert_to_inventory
The plant_convert_to_inventory function will allow a licensee to convert a plant that is
growing (but not flowering) into an inventory item that can then be transferred and
sold. Once converted, the new item will keep its identifier but will now have an
inventory type of 12 (Mature Plant).

Parameters:
action variable length text field
barcodeid Array of 1 or more text fields

representing the plants to convert

{
 "JSON": {
 "API": "4.0",
 "action": "plant_convert_to_inventory",
 "barcodeid": [
 "6853296789574125",
 "6853296789574126"
]
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

C H A P T E R 4 : P L A N T S

34

plant_yield_modify
The plant_yield_modify function will allow direct access to modify previously stored
values for harvest and cure collections. The user will need to specify one transaction at
a time. The integrator is, of course, free to hide this from the end-user with multiple
API calls behind the scenes if they display the capability to modify collected values in a
unique or innovative way.

The user can, however, specify all values that would have been specifiable at the time
of the original transaction. That is, if the transaction relates to the plant_harvest, wet
weight and any derivative can be specified. If the original transaction was a plant_cure,
dry weight could be specified, instead. Only values that are included will be modified. If
a user wishes to zero out a value, it must be declared. Null or absent values will retain
their previous values.

Parameters:
action variable length text field
collectiontime Optional, Unix 32-bit integer

timestamp, defaults to current time
transactionid integer, the transaction to correct
weights Array of 1 or more nodes containing

weight information
 amount Optional, decimal value
 invtype integer value representing the

derivative type
 uom variable length text field. Valid values

are: g, mg, kg, oz, lb. These
represent: grams, milligrams,
kilograms, ounces and pounds.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "plant_yield_modify",
 "transactionid": "3290",
 "weights": {
 "amount": "450.00",
 "invtype": "6",
 "uom": "g"

C H A P T E R 4 : P L A N T S

35

 }
 }
}

Returns:
{
 "JSON": {
 "sessiontime": "1384487873",
 "success": "1",
 "transactionid": "3309"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

C H A P T E R 5 : I N V E N T O R Y

36

Chapter 5: Inventory

In this chapter, you’ll learn how to:

 Adjust and audit inventory

 Create new inventory

 Convert inventory

 Perform inventory lookups

inventory_adjust
The inventory_adjust function will allow a licensee to adjust the amount or quantity of
an inventory item. The type field can represent one of the following: 1 (General
Inventory Audit), 2 (Theft), 3, (Seizure by Federal, State, Local or Tribal Law
Enforcement), 4 (Correcting a mistake)

Parameters:
action variable length text field
barcodeid inventory identifier
quantity integer value, new quantity
uom variable length text field. Valid values

are: g, mg, kg, oz, lb, each. These
represent: grams, milligrams,
kilograms, ounces, pounds, each. If
weighable, grams are assumed if
omitted. If non-weighable, each is
assumed.

reason variable length text field explaining in
greater detail the reason for the
removal or addition of inventory

type Integer value representing the type of
adjustment.

C H A P T E R 5 : I N V E N T O R Y

37

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_adjust",
 "barcodeid": "6647455983218747",
 "quantity": "690",
 "reason": "Testing",
 "type": "1"
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3311"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

inventory_destroy_schedule
The inventory_destroy_schedule function will notify the traceability system of intent to
destroy an inventory item. Per current rules, this function can only (currently) be called
by producers and processors.

Parameters:
action variable length text field
barcodeid Array of 1 or more text fields

representing the plants
reason reason for the destruction

C H A P T E R 5 : I N V E N T O R Y

38

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_destroy_schedule",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
],
 "reason": "Mold"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

inventory_destroy
The inventory_destroy function will allow a licensee to destroy an item that has been
previously scheduled for destruction.

Parameters:
action variable length text field
barcodeid inventory identifier
reason reason for the removal or addition of

inventory
health Boolean value, indicates if the

removal is due to health concerns

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_destroy",
 "barcodeid": "6647455983218747"
 }
}

C H A P T E R 5 : I N V E N T O R Y

39

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3411"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

inventory_move
The inventory_move function will update the current room for the specified inventory
items. Essentially, it allows a user to move inventory from one room to another.

Parameters:
action variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier

room Integer value, represents the
identification number of a room

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_move",
 "data": [
 {
 "barcodeid": "7480211204033809",
 "room": "1"
 },
 {
 "barcodeid": "7480211204033808",

C H A P T E R 5 : I N V E N T O R Y

40

 "room": "1"
 }
]
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3626"
 }
}

inventory_check
The inventory_check function can be used to perform a cursory lookup on an
item before an inbound inventory_transfer from an outside licensee. It will pull
various pieces of inventory on the inventory identifiers specified in the request.
This information can include: strain, quantity available, usable weight (if
applicable), product (if applicable) and inventory type.

Parameters:
action variable length text field
barcodeid Array of 1 or more text fields

representing the inventory to lookup

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_check",
 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
]
 }

C H A P T E R 5 : I N V E N T O R Y

41

}

Returned Parameters:
success Boolean value
data Array of 1 or more nodes containing

inventory information
 barcode_id inventory identifier
 strain variable length text field
 product variable length text field
 quantity decimal value
 usableweight decimal value (in grams).
 inventorytype integer value based on pre-defined

inventory types

Return example:

{
 "JSON": {
 "data": {
 "barcode_id": "8919990967962719",
 "invtype": "28",
 "quantity": "10",
 "usableweight": "3.50",
 "strain": "Blueberry"
 },
 "success": "1"
 }
}

inventory_new
The inventory_new function can be used to create new inventory not previously
entered into the system. This function is ONLY accessible to a licensee that has
been designated as a producer may only be used for the first 15 days of operation.
Subsequent calls to this function will be denied. In addition, only four types may
be provided to this function: Seed, Clone, Mature Plant and Plant Tissue.

Parameters:

C H A P T E R 5 : I N V E N T O R Y

42

action variable length text field
location license number of location
data Array of 1 or more nodes containing

new inventory information
 strain variable length text field
 quantity integer value
 invtype integer, corresponds to the inventory

type system

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_new",
 "data": {
 "invtype": "12",
 "quantity": "50",
 "strain": "Blueberry"
 },
 "location": "12345"
 }
}

Return example:
{
 "JSON": {
 "barcode_id": [
 "6853296789574115",
 "6853296789574116"
],
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3278"
 }
}

C H A P T E R 5 : I N V E N T O R Y

43

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id Array of 1 or more text fields representing

the new unique identifiers attached to the
inventory items

inventory_manifest
The inventory_manifest function will notify the traceability system of intent to transfer
an inventory item. This function will need to be called in instances of transfers from
one licensee to another. It will also need to be called for licensees which possess
multiples licenses (e.g. Producer + Processor) that possess different license numbers.
For internal transfers (e.g. from one part of a facility to another), there is no need to
quarantine and schedule a transfer.

Parameters:
action variable length text field
barcodeid Array of 1 or more text fields

representing the items to be
transferred

employee_id variable length text field
vehicle_id integer value
approximate_departure Unix 32-bit integer timestamp,

approximate departure time
approximate_arrival Unix 32-bit integer timestamp,

approximate arrival time
approximate_route variable length text field, route that

will be used
vendor_license license number of vendor the item(s)

are being transferred to
new_room Optional, can specify the item(s)

have been placed into e.g. a
quarantine room.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_manifest",

C H A P T E R 5 : I N V E N T O R Y

44

 "barcodeid": [
 "6853296789574115",
 "6853296789574116"
],
 "employee_id": "23468",
 "vehicle_id": "2",
 "approximate_departure": "1384476925",
 "approximate_arrival": "1384486925",
 "approximate_route": "Turn left on Main St.",
 "vendor_license": "25678787644"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id Unique identifier attached to the manifest

inventory_transfer
The inventory_transfer function can be used to transfer inventory that already
exists in the system. A manifest must be filed prior to transfer if being transferred
to a license number other than the one that currently possesses the item.

Parameters:
action variable length text field
vendor_license variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier
 price Optional if inter-UBI transfer,

decimal value that indicates how
much the item was sold for
INCLUDING excise tax.

{
 "JSON": {

C H A P T E R 5 : I N V E N T O R Y

45

 "API": "4.0",
 "action": "inventory_transfer",
 "data": {
 "barcodeid": "6853296789574115",
 "price": "100.00"
 }
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3778"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

inventory_transfer_modify
The inventory_transfer_modify function will allow a user to modify the price recorded
for an inventory transfer sale. This can be used before filing a monthly report if a line
item mistake is noticed and needs to be corrected.

Parameters:
action variable length text field
transactionid integer value
barcodeid inventory identifier
price Decimal value representing the price

paid INCLUDING the excise tax but
NOT including any other taxes that
may be applicable.

C H A P T E R 5 : I N V E N T O R Y

46

item_number Optional, integer, should be provided
if multiple line items of the same
barcode were included in one sale. 0
would represent the first item (in the
order submitted to the system), 1 the
next, etc.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_transfer_modify",
 "transactionid": "3590",
 "barcodeid": "6647455983218749",
 "price": "15.00"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

inventory_create_lot
The inventory_create_lot function will allow a user to combine inventory types 6
(Flower) and 9 (Other Plant Material) into lots as mandated by rules. The return types
will be 13 (Flower Lot) and 14 (Other Plant Material Lot), respectively.

Parameters:
action variable length text field
strain variable length text field
lot_quantity decimal value, new quantity of

combined items
lot_quantity_uom variable length text field. Valid values

are: g, mg, kg, oz, lb, each. These
represent: grams, milligrams,
kilograms, ounces, pounds, each.

C H A P T E R 5 : I N V E N T O R Y

47

data Array of 1 or more nodes containing
inventory information

 barcodeid inventory identifier
 remove_quantity integer value, quantity to remove.

Does not need to be remaining
quantity (can be a partial
combination).

 remove_quantity_uom variable length text field. Valid values
are: g, mg, kg, oz, lb, each. These
represent: grams, milligrams,
kilograms, ounces, pounds, each.

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_create_lot",
 "lot_quantity": "945",
 "data": [
 {
 "barcodeid": "6647455983218747",
 "remove_quantity": "693.00"
 },
 {
 "barcodeid": "5723224643296982",
 "remove_quantity": "252.00"
 }
],
 "strain": "Blueberry"
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "barcode_id": "5723224643296983",

C H A P T E R 5 : I N V E N T O R Y

48

 "barcode_type": "13",
 "success": "1",
 "transactionid": "3312"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id text field representing new unique identifier
barcode_type integer representing new lot type

inventory_split
The inventory_split function will allow a user to split inventory items into sub lots or
sub batches. For example, if a user has a lot of Flower and only wishes to sell half of it,
they would need to first create a sub lot using this function. Then, with the new lot
number, they can sell the desired amount. Multiple lots or batches can be specified at a
time, however, keep in mind they will not be combined. Rather, each one will receive a
new sub-lot or sub-batch number.

Parameters:
action variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier
 remove_quantity integer value, quantity to remove.

Does not need to be remaining
quantity (can be a partial
combination).

 remove_quantity_uom variable length text field. Valid values
are: g, mg, kg, oz, lb, each. These
represent: grams, milligrams,
kilograms, ounces, pounds, each.

{
 "JSON": {
 "API": "4.0",

C H A P T E R 5 : I N V E N T O R Y

49

 "action": "inventory_split",
 "data": [
 {
 "barcodeid": "6647455983218747",
 "remove_quantity": "693.00"
 },
 {
 "barcodeid": "5723224643296982",
 "remove_quantity": "252.00"
 }
]
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "barcode_id": [
 "5723224643296983",
 "5723224643296984"
],
 "success": "1",
 "transactionid": "3312"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
barcode_id text fields representing new unique

identifier, returned in the order of the input
identifiers

C H A P T E R 5 : I N V E N T O R Y

50

inventory_convert
The inventory_convert function will allow a user to convert one type of item to
another. The system allows for multiple sources. So, for example, a processor may use
part of various Other Plant Material Lots in producing a batch of hash oil. Certain
derivatives may not be strain specific, so entering a strain is optional under those
circumstances. Product name is optional when it is not the end product. If the
derivative item will be sold to a consumer (that is, inventory types 22,23,24,25) and is
not regular usable marijuana (type 28), then a product will be required (e.g. Cookie,
Brownie, etc).

Parameters:
action variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier
 remove_quantity integer value, quantity to remove.

Does not need to be remaining
quantity (can be a partial
combination).

 remove_quantity_uom variable length text field. Valid values
are: g, mg, kg, oz, lb, each. These
represent: grams, milligrams,
kilograms, ounces, pounds, each.

waste decimal value, amount of waste
produced by the process, if any

waste_uom Valid values are: g, mg, kg, oz, lb.
These represent: grams, milligrams,
kilograms, ounces, pounds.

derivative_type Inventory type of derivative item
derivative_quantity decimal value, quantity of new

derivative after conversion
derivative_quantity_uom Valid values are: g, mg, kg, oz, lb,

each. These represent: grams,
milligrams, kilograms, ounces,
pounds, each.

derivative_usable decimal value, quantity of usable
marijuana in new product after
conversion

derivative_usable_uom Valid values are: g, mg, kg, oz, lb,
each. These represent: grams,

C H A P T E R 5 : I N V E N T O R Y

51

milligrams, kilograms, ounces,
pounds, each.

derivative_strain Optional, variable length text field
derivative_product Optional, variable length text field

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_convert",
 "data": {
 "barcodeid": "6647455983218747",
 "remove_quantity": "25.00"
 },
 "waste": "15.00",
 "derivative_quantity": "10.00",
 "derivative_inventory_type": "18"
 }
}

Return example:
{
 "JSON": {
 "derivatives": [
 {
 "barcode_id": "0358560579655606",
 "barcode_type": "18"
 },
 {
 "barcode_id": "0358560579655605",
 "barcode_type": "27"
 }
]
 }

C H A P T E R 5 : I N V E N T O R Y

52

}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp
derivatives Array of 1 or more nodes containing new

identifiers with their associated inventory
types.

 barcode_id New identifier for the inventory specified
by barcode_type.

 barcode_type Specifies the type of derivative.

inventory_sample
The inventory_sample function will allow a user to provide samples as allowed by law.
Specifically, samples can be provided to employees for quality assurance purposes or to
vendors for the purposes of negotiating a sale. Either employee_id or vendor_license
should be provided; but not both.

Parameters:
action variable length text field
barcodeid inventory identifier
employee_id Optional, variable length text field
vendor_license Optional, variable length text field

representing license number of
receiving entity

quantity decimal value, quantity of old
product before conversion

quantity_uom Valid values are: g, mg, kg, oz, lb,
each. These represent: grams,
milligrams, kilograms, ounces,
pounds, each.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "inventory_sample",

C H A P T E R 5 : I N V E N T O R Y

53

 "barcodeid": "6647455983218747",
 "quantity": "1.00",
 "employee_id": "12356"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

C H A P T E R 6 : S A L E S

54

Chapter 6: Sales

In this chapter, you’ll learn how to:

 Deduct inventory for a sale

 Void a sale

 Refund a sale

sale_dispense
The sale_dispense function will allow a user to deduct items from inventory through
the sales process. Since all items sold must be pre-packaged, units will be assumed to be
“each”.

Parameters:
action variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier
 quantity integer value, quantity to remove
 price Decimal value representing the price

paid INCLUDING the excise tax but
NOT including any other taxes that
may be applicable.

C H A P T E R 6 : S A L E S

55

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "sale_dispense",
 "data": [
 {
 "barcodeid": "6647455983218747",
 "quantity": "1.00",
 "price": "5.00"
 },
 {
 "barcodeid": "6647455983218749",
 "quantity": "1.00",
 "price": "15.00"
 }
]
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3312"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

C H A P T E R 6 : S A L E S

56

sale_void
The sale_void function will reverse items that have been sold to a customer and return
the items to inventory. A refund should be used, instead, when the return is not being
used to simply fix a mistake.

Parameters:
action variable length text field
transactionid integer value

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "sale_void",
 "transactionid": "3590"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

sale_modify
The sale_modify function will allow a user to modify the price recorded for a sale. This
can be used before filing a monthly report if a line item mistake is noticed and needs to
be corrected.

Parameters:
action variable length text field
transactionid integer value
barcodeid inventory identifier
price Decimal value representing the price

paid INCLUDING the excise tax but
NOT including any other taxes that
may be applicable.

item_number Optional, integer, should be provided
if multiple line items of the same

C H A P T E R 6 : S A L E S

57

barcode were included in one sale. 0
would represent the first item (in the
order submitted to the system), 1 the
next, etc.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "sale_modify",
 "transactionid": "3590",
 "barcodeid": "6647455983218749",
 "price": "15.00"
 }
}

Returned Parameters:
success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

sale_refund
The sale_refund function is nearly identical to sale_dispense except that it for items to
selectively come back into inventory from a sale. This can take place at any time period
after the original sale and will reflect on current sales as opposed to affecting previously
reported data. You must specify both a transactionid and one or more identifiers.
Retailers are not currently allowed by rule to destroy product, so if an open item is
received it must be scheduled for transfer back to the processor for destruction.

Parameters:
action variable length text field
data Array of 1 or more nodes containing

inventory information
 barcodeid inventory identifier
 quantity integer value, quantity to bring in.
 price Negative decimal value representing

the price paid INCLUDING the

C H A P T E R 6 : S A L E S

58

excise tax but NOT including any
other taxes that may be applicable.

Example:

{
 "JSON": {
 "API": "4.0",
 "action": "sale_refund",
 "data": [
 {
 "barcodeid": "6647455983218747",
 "quantity": "1.00",
 "price": "-5.00"
 },
 {
 "barcodeid": "6647455983218749",
 "quantity": "1.00",
 "price": "-15.00"
 }
]
 }
}

Return example:
{
 "JSON": {
 "sessiontime": "1384476925",
 "success": "1",
 "transactionid": "3312"
 }
}

Returned Parameters:

C H A P T E R 6 : S A L E S

59

success Boolean value
transactionid integer value
sessiontime Unix 32-bit integer timestamp

C H A P T E R 7 : T E S T I N G

60

Chapter 7: Testing

In this chapter, you’ll learn how to:

 Send lab results directly from a laboratory

Reserved

C H A P T E R 8 : S Y N C H R O N I Z A T I O N

61

Chapter 8: Synchronization

In this chapter, you’ll learn how to:

 Download current plants, inventory, etc. stored in traceability system

 Receive notifications of inventory seizures, etc.

 Assist a licensee transition from the state interface to a commercial application

Reserved

